GCA v2 Mini-Spec

Based on the 31 March 1997 version of the full specification.

GURPS Character Assistant (GCA) is a product of Armin D. Sykes, published
by Miser Software.

Some information in this document is taken from the following copyrighted
sources: GURPS Magic, Copyright (¢) 1989, 1990 by Steve Jackson Games,
Incorporated. All rights reserved. GURPS Psionics, Copyright (c) 1991 by Steve
Jackson Games Incorporated. All rights reserved.

GURPS is a registered trademark of Steve Jackson Games Incorporated, used
with GCA by permission of Steve Jackson Games. All rights reserved.

The GURPS game is Copyright © 1986-1989, 1991-1994 by Steve Jackson
Games Incorporated. GCA and portions of this document include copyrighted
material from the GURPS game, which is used with GCA by permission of Steve
Jackson Games Incorporated. All rights reserved by Steve Jackson Games
Incorporated.

GURPS Character Assistant v2 Data File Format Specification is Copyright ©
1996, 1997 by Armin D. Sykes. All rights reserved.

GCA v2 Mini-Spec is Copyright © 1997 by Armin D. Sykes. All rights reserved.

GCA v2 Mini-Spec

Contents
PUIDOSE ..
Restricted Characterseeeeiiiiiiiiii e
L (=] 1 = 1o [PR U PR 3
IMBEN <. 4
FUNCHIONS <.ttt e e e e e 4
@MAX() @nd @MIN() .eeeeiieieeiiie e 4
@ IF () ettt ettt nb et e e nneeaa 5
Tags Detail Informationoovviiiiiiiiiii e 5
EFAUIT() e e e e e e e 6
[0 AT () PP RUPT TR 6
GIVING POINTS .. 8
Expanded FOrMALooiiiiiiiiiiiiieie e 9
(TSTTo [() TP TP 9
ThIS OR THaL ...ceiiiiiiieeie e 11
V2.1 CRANGES ..eeiiiiieeiiiiet ettt e e e e e e 12
0] o] (o] () TP PP PPPRPPPP 12
SKIIIS e 13
MOAIFIEIS .o 13
Additional ASSISTANCEcooviiiiiiiiiiireeee e 13

Page 2

GCA v2 Mini-Spec

Purpose

This mini-version of the much larger GCA v2 Data File Format Specification is
intended to provide only the information that a user of GCA needs to make better
use of certain important tags within GCA. Tags are those parts of items that hold
information that GCA uses (the headings on the columns of the Edit window), so
gives() is a tag, while the information within the parenthesis is the information
GCA uses for the gives() tag (the information within the columns of the Edit
window).

The information contained in this file is taken directly from the full GCA v2
Data File Format Specification (available on the GCA web site: http://
www.teleport.com/~armin/gca/), and you can look there for more complete
information on the structure GCA uses for data files.

Restricted Characters

Because GCA uses certain characters to mean certain things internally, you
should avoid using certain characters. These characters should be considered
restricted:

O

You can often use these characters safely within most tags, but it is better to
avoid them in most cases unless they are part of a tag being used in the specified
manner. In particular, be careful when using (and), because having an uneven
number of either one can cause GCA to hang.

Prefix Tags

Prefix Tags are special tags tacked on to the front of the name of an ad, disad,
quirk, power, skill or spell that tells GCA exactly where to look for that particu-
lar item. Valid tags are:

AD: for advantages
ADS: for advantages
PO: for powers
POWERS: for powers

Dl: for disadvantages
DISADS: for disadvantages
QU: for quirks
QUIRKS: for quirks

SK: for skills

SP: for spells

GR: for groups

Page 3

GCA v2 Mini-Spec

CL: for classes
CO: for colleges

It is to your advantage to use a Prefix Tag in all cases where you are referring to
another item, since it will speed up how fast things are found. In most cases,
Prefix Tags are *required*, not optional, so you should get in the habit of using
them.

Math

In several areas in a data file, GCA will support the evaluation of mathematical
expressions. Because of this, GCA must be able to see and recognize math
characters for what they are. There are several characters that are recognized as
math characters in these areas, and you should take special care. These charac-
ters are all math characters:

(O)+-*/<>=

If any of these characters appears within the name of an item that is being used in
a math section, that item name must be enclosed within double quotes, including
any prefix tag, if applicable. For example, if a weapon skill was to default from

the skill Axe/Mace at -4, then the default() tag for that item should look like

this:

default(“SK:Axe/Mace”-4)
Notice that the prefix tag of SK: is included within the quotes along with the

name of the skill, but the rest of the math expression appears outside of the
quotes.

Functions

There are several simple functions supported in places where math can be used.
These functions are described here.

@MAX() and @MIN()

These two functions simply return the highest or lowest value from a list of
values. If appropriate, the values in the list may use math also, including refer-
ences such as ‘prereq’ or ‘default’ if being used in a skill line. The use of these
functions looks something like this (in an upto() tag, which supports math):

upto(@max(12, prereg-2, default-5))

What happens in this upto() tag is this: the function is looked at and everything

Page 4

GCA v2 Mini-Spec

in the list of items between the parenthesis for the function is evaluated. Then,
the highest of those numbers is selected (lowest if you were using @min). So, if
the level of the prerequisite skill for the item above was 15 and the level of the
skill we were defaulting from was 15 also, the upto() tag would look like this to
GCA after all of the calculations were made:

upto(@max(12, 13, 10))

So, the upto() limit on the item would be the highest value between the three
numbers in the list, which is 13 in this case. If the @min function had been used
instead, the upto() limit on the skill level would be 10 instead.

Note: any number of items can be used in the @max and @min items list, so

long as they are all separated by commas. And, as you can see, math within each
item of the list is supported as well. Remember that you must be sure to quote
the names of items that use reserved math characters (see Math above), and if
you want to use the points of a quoted item, include the * pts’ part within the
double quotes.

@IF()

The @if function allows you to specify one of two possible results, depending on
an evaluation. The syntax for the @if function is like this:

@IF(expression THEN result ELSE altresult)

Notice that because it is a function, the entire statement (except the @if part) is
enclosed within parens. 'expression’ is an expression, such as 1Q > 10, a bit of
math, or whatever. (See the new list of math symbols above!) 'result' and
‘altresult’ are values or math that results in a value. If 'expression'®a+nero
result, including a true evaluation (such as 3>2), then the 'result' is used as the
result of the function, otherwise 'altresult' is used as the result of the function. If
there is no Else part, then 0 would be returned for any false, or zero, result of
‘expression'. An example would be this upto() tag:

upto(@if(1Q > 10 then 10 else 5))
(watch those parens to make sure they match!) In this case, if the character's 1Q
is more than 10, upto() would be 10, otherwise it would be 5.

You can nest one @if function within another, but be very cautious when you do
S0, because it can be very easy to loose track of the parens, and thereby crash
GCA when loading your data file because of unmatched pairs.

Tags Detail Information

Page 5

GCA v2 Mini-Spec

default()
Applies to: skills.

This tag allows skills in the data file to specify from what items they may default
and at what penalty, if any. Generally, the defaults should be specified in the
same fashion as used by the GURPS books. For example, if the skill can default
from DX at -6, the Default tag should be written like this:

default(DX-6)

If the skill can default from another skill, then it should also be written as
specified in the GURPS books, except that the appropriate prefix tag should be
used. For example, if the skill can default from Blacksmith skill at -3, the Default
tag should be written like this:

default(SK:Blacksmith-3)

If the skill can default from more than one possible item, they can all be included
in the Default tag by separating the different items with commas. For example, if
the skill can default from either DX at -6 or Blacksmith skill at -3, the Default

tag should be written like this:

default(DX-6, SK:Blacksmith-3)

GCA will know that only the best default possible should be used for the
character.

Simple math may be used in the default tag items. The purpose for allowing
simple math is so that certain items which may default from calculated items can
still be used. For example, if an item can default off the Karate parry, which is 2/
3 of the Karate skill, the only way to get at that number is to figure it in the
Default tag. For example, the Hand-Clap Parry maneuver (from GURPS Martial
Arts) Default tag would look like this:

default(SK:Judo*2/3-5, SK:Karate*2/3-5)

gives()

Applies to: advantages, disadvantages, powers, skills and mods.

This tag allows items in the data file to specify what bonuses or penalties should

be applied to other items on the character if they take the current item. Generally,
the items given to the character should be specified in the same fashion as used

by the GURPS books. For example, if the item grants a +1/8 bonus to Speed for

each level, the Gives tag should be written like this:

gives(+1/8 Speed)

Page 6

GCA v2 Mini-Spec

If the item gives to a skill instead of an attribute, the appropriate prefix tag
should be used. For example, if the item gives a +3 to the Navigation skill, the
Gives tag should be written like this:

gives(+3 SK:Navigation)

If the item can be applied to all the items in a Group specified elsewhere in the
data file, the name of the Group and the appropriate prefix tag should be used to
apply the bonus to all items belonging to that group. For example, if the item
gives a +2 bonus to everything in the Group Voice, the Gives tag should be
written like this:

gives(+2 GR:Voice)

If the item has more than one item to which it applies bonuses or penalties, they
can all be included in the Gives tag by separating the different items with
commas. For example, if the item gives a +3 bonus to Climbing skill and to
Mechanic skill, the Gives tag should be written like this:

gives(+3 SK:Climbing, +3 SK:Mechanic)

The items given by the Gives tag do not have to be only bonuses. For example, if
the item gives a -1 penalty to the Merchant skill, the Gives tag should be written
like this:

gives(-1 SK:Merchant)

Also, the items given by the Gives tag do not have to be only pluses or minuses.
In certain special cases, the given item can by a multiplier. In this case, an ‘x’ or
an * should be used to denote multiplication. For example, if the item gives
double the points spent on Mental skills, the Gives tag should be written like
this:

gives(*2 MentalSkillPoints)

If the item also gave a +1 bonus to all spells the character takes, then the Gives
tag should be written like this:

gives(*2 MentalSkillPoints, +1 Spells)

Bonuses or penalties applied from the Gives tag are automatically increased by
GCA to match the appropriate level taken of the item, so all items given in the
tag should be specified as if they were per level adjustments. For example, if two
levels of the item from the previous example were taken, the resultant bonus to
the character would be *4 to all points spent on Mental skills and +2 to all spells.

Page 7

GCA v2 Mini-Spec

If you need a bonus that is applied to an item only one time, just for having the
bonus granting item, that does not increment according to the levels taken of the
item, you must use the ‘=" sign at the beginning of the bonus instead. For
example:

gives(=6 SK:Accounting)

This will add six levels to the Accounting skill, but only one time, so taking
additional levels in the bonus-granting item will not increase the bonus the
Accounting skill will receive from it. Note that only addition bonuses of this kind
are supported and that using ‘=+' is the same as using ‘=" at the beginning of the
section.

Giving Points

Gives() can be used to give points to skills. The structure of the tag is the same,
except the end of the bonus part must end with ‘pts’ and there can be no spaces
between the ‘pts’ part and the bonus. For example:

gives(+6pts SK:Accounting)

This bonus grants 6 points to the Accounting skill per level of the bonus granting
item. Note that you can also give non-incrementing points, such as:

gives(=6pts SK:Accounting)

which gives a one time bonus of 6 points to the Accounting skill, regardless of
the level of the item giving the bonus.

Here are some items that can be used in a Gives tag:

ST denotes that the ST score should be affected.

DX denotes that the DX score should be affected.

IQ denotes that the 1Q score should be affected.

HT denotes that the HT score should be affected.

Willdenotes that the Will score should be affected.

Fatigue denotes that the Fatigue score should be affected.

Hit Points denotes that the Hit Points score should be affected.

MentalSkillPointsdenotes that all skill points for Mental skills should be af-
fected. This will only affect skills of type M/something, so P, MA and S
skills all will be unaffected.

Spells denotes that all spells taken by the character should be affected.

Page 8

GCA v2 Mini-Spec

Skills denotes that all skills taken by the character should be affected.

Expanded Format

The Gives tag also has an expanded format that can be more readable for some
users and is required for certain expanded features of the tag. Basically, the
expanded format makes use of keywords to help GCA determine where different
things are in the data file. The most common keyword is TO and it is used to
separate the bonus from the item being given the bonus. For example, a gives
using TO might look like this:

gives(+3 to SK:Climbing, +3 to SK:Mechanic)

Note that there must be a space to either side of the keyword for GCA to be able
to identify it properly. The TO keyword is optional for most cases of Gives, but it
is required when using other keywords, or when doing math in the bonus portion
of a Gives item.

The only other keyword currently defined in Gives is UPTO and it is used to
limit the amount of a bonus that can be received from an item. For example:

gives(+1/8 to Speed upto 2)

would limit the bonus to a maximum of +2, regardless of how many levels of the
item were actually taken.

needs()

Applies to: advantages, disadvantages, quirks, powers, skills and spells.

This tag allows items to specify any needed requirements or prerequisites for the
current item. Generally, all needs should be prefixed with the appropriate prefix
tag for the type of need, such as AD: for needed advantages and SK: for needed
skills. It is not necessary to use a prefix tag for needed spells within the Spells
section of the data file, but it is suggested that you do so, since this will speed up
processing.

How these needs are written may vary slightly from the way they are generally
written in the GURPS books.

If a particular attribute score is required, the tag should be written as the name of
the attribute equal to the minimum value required. For example, if an 1Q of 15 is
required, the Needs tag should be written like this:

needs(IQ=15)

GCA knows that any value higher than this will also satisfy the need.

Page 9

GCA v2 Mini-Spec

If a particular advantage is required, the tag should be written as the name of the
advantage, including the appropriate prefix tag. For example, if Magery is
required, the Needs tag should be written like this:

needs(ADS:Magery)
If the advantage is needed at a particular level, the tag should be written as the

name of the advantage equal to the minimum level required. For example, if
Magery 3 is required, the Needs tag should be written like this:

needs(ADS:Magery=3)

GCA knows that any value higher than this will also satisfy the need.

If a particular skill is required, the tag should be written as the name of the skill,
including the appropriate prefix tag. For example, if Physics is required, the
Needs tag should be written like this:

needs(SK:Physics)
If the skill is needed at a particular level, the tag should be written as the name of

the skill equal to the minimum level required. For example, if a Physics skill of
15 is required, the Needs tag should be written like this:

needs(SK:Physics=15)

GCA knows that any value higher than this will also satisfy the need.

If a particular spell is required, the tag should be written in the exact same
fashion as if it was a required skill, with the exception that the SP: prefix tag
should be used instead of the SK: prefix tag.

Please note that the default level required for a needed spell is 12, while for a
skill it is only 1.

If one or more items from a Group is required, the tag should be written as the
number of items needed from the Group, followed by the name of the Group
with the appropriate prefix tag. For example, if 2 spells are needed from the
Group Seek Spells, the Needs tag should be written like this:

needs(2 GR:Seek Spells)

If all of the items from a particular Group are needed, simply omit any number
before the name of the Group and the entire group will be considered to be
required, like this:

needs(GR:Seek Spells)

Spell Colleges can be considered special kinds of Groups and you can use the

Page 10

GCA v2 Mini-Spec

same format as that for Groups to require items from a College. You should not,
however, use any prefix tag when referring to a needed College. For example, if
you need 4 spells from the Air College, the Needs tag should be written like this:

needs(4 Air)

This OR That

In many cases, Needs are given as two or more possibilities that may satisfy the
Needs for that particular item. The way GCA handles it is to use the OR sign (|

). The OR sign (also know as the pipe symbol) can be found over the backslash (
\) character on most keyboards.

When GCA sees an OR sign in the Needs tag information, it breaks the need into
groups based on the OR sign, so everything that is needed to satisfy the Need
must be specified on each side of the separator. For example, the Underwater
Demolition skill has a prerequisite of the Scuba skill and either the Demolition
skill or the Engineer skill. So, what this means is that the Needs for this skill
would be satisfied if the character had the Scuba skill and the Demolition skill,

or the Scuba skill and the Engineer skill. The Needs tag for the Underwater
Demolition skill would look like this:

needs(SK:Scuba, SK:Demolition | SK:Scuba,
SK:Engineer)

Remember, GCA breaks the Needs information apart at the OR, so anything that
is always needed must be listed on both sides.

Here is another example, the Summon Elemental spell, in this case for the Earth
college. This spell always needs Magery of at least level 1, but then is satisfied if
the character has 8 other Earth spells, or 4 other Earth spells and either Summon
Air Elemental, Summon Water Elemental or Summon Fire Elemental. Now,
knowing this, and that the one item that is required in all cases (Magery 1) must
be repeated in each group, the Summon Earth Elemental spell would be recorded
like this in the Spells section (the _ characters are to make it easier to read and
are only required if you actually break the spell into multiple lines in the data

file):

Summon Earth Elemental, needs_

(ADS:Magery=1, 8 Earth _

| ADS:Magery=1, 4 Earth, Summon Air Elemental _

| ADS:Magery=1, 4 Earth, Summon Water Elemental _
| ADS:Magery=1, 4 Earth, Summon Fire Elemental _
), page(B156)

Page 11

GCA v2 Mini-Spec

v2.1 Changes

As of v2.1, Needs can now support additional evaluations, such as >, <, >=, <=,
or ==. Those should be pretty obvious as to what they require, with the possible
exception of ==. Using == means that the needed item must be exactly equal to
the value specified, not equal to or greater than as the = sign means. Note also
that >= is the same as = to GCA.

GCA v2.1 also adds math support for the right side of the Needs evaluation, so
you could specify a needs like this:

needs(SK:Moping=(1Q+HT)/2)

upto()

Applies to: advantages, disadvantages, powers, skills and mods.

This tag allows the item to specify the number of levels or points that an item
may have, if the cost of the item is specified as one that may allow multiple
levels. For example, Magery may have up to three levels, so the Magery advan-
tage would be recorded like this:

Magery, 15/10, upto(3), gives(+1 Spells), page(B21)

The 15/10 cost specifies that the first level costs 15 points and additional levels
cost 10 points each. Since only 3 levels are available, it is necessary to use the
Upto tag to specify that the item can only go up to three levels.

The Upto tag as shown above lists the number of levels that may be limited by
the Upto tag. You may also specify the maximum number of points that can be
used in the item, by ending the expression within the tag parenthesis with the
abbreviation for points, pts. For example, you could list the Upto tag for the
Magery example given above like this instead:

upto(35pts)

You can also use math in an Upto tag section. You should list any math items in
the same way that you would normally write math in a document, using standard
order of operations and allowing parenthesis (see Math above).

Just for the sake of example, lets use an Upto tag with some unnecessary extra
math in it. For this example, we’ll use a made up advantage called Targeting
Ears, which is limited in the maximum level allowed by the level of Acute
Hearing the character has. Here is a possible Upto tag for our Targeting Ears:

upto((3 + 2) * 2 + ADS:Acute Hearing * 5pts)

Page 12

GCA v2 Mini-Spec

Note that parenthesis are allowed (make sure the (and) pairs balance, with the
same number of each!) and a reference is made to the Acute Hearing advantage.
This particular advantage is limited to a number of points that can be spent, as
denoted by the fact that it ends with pts. Remember your order of operations!
Multiplication and division is done before addition and subtraction, so the Acute
Hearing level will be multiplied by 5 before being added to the other stuff.

If you wanted to reference the value for the points spent on the Acute Hearing
advantage, instead of the level of that advantage as shown in the above example,
you should end the name of the item with a space and a pts designation. The
space is very important, otherwise GCA will think that the pts designation is part
of the advantage name. The above example, using the points of the Acute
Hearing advantage instead, would look like this:

upto((3 + 2) * 2 + ADS:Acute Hearing pts * 5pts)

Skills

While the examples in this section pertain mainly to advantages, Upto applies
equally well to skills, where limiting often comes into play with maneuvers.

Skills have two additional references that are allowed: default and prereq. If a
skill (including a maneuver) is defaulted from something else, the word default
can be used to provide a reference to the item from which the skill is defaulted,
without having to know exactly which item that may be. If a skill is limited by

the level of its prerequisite item, then the word prereq can be used to provide a
reference to the highest value of all possible preregs that exist for the skKill.

For example, if a skill requires either Karate or Judo, but can not exceed the
level of its prerequisite skill, the Upto for that maneuver could be written like
this:

upto(prereq)

Of course, math is also supported with this pair of references.

Modifiers

As of v2.1, Modifiers are now allowed to use math in an Upto statement. You
still may not specify a number of points, however.

Additional Assistance

If you need additional assistance, try posting your question to the GCA mailing
list. To subscribe to the mailing list, send an email message to

Page 13

GCA v2 Mini-Spec

gca-lI-request@lists.sidhe.org

with the word SUBSCRIBE as the only text in the body of the message.
The address to send your questions or responses to is

gca-l@lists.sidhe.org

The GCA-L mailing list is an excellent resource, because it is monitored by the
author of GCA and a variety of knowledgeable users, all willing to help.

Page 14

	Contents
	Purpose
	Restricted Characters
	Prefix Tags
	Math
	Functions
	@MAX() and @MIN()
	@IF()
	Tags Detail Information
	default()
	gives()
	Giving Points
	Expanded Format
	needs()
	This OR That
	v2.1 Changes
	upto()
	Skills
	Modifiers
	Additional Assistance

